资源类型

期刊论文 1129

年份

2024 1

2023 73

2022 102

2021 76

2020 84

2019 56

2018 55

2017 51

2016 44

2015 58

2014 47

2013 41

2012 46

2011 40

2010 53

2009 49

2008 39

2007 44

2006 32

2005 30

展开 ︾

关键词

数学模型 13

数值模拟 9

模型试验 9

模型 7

COVID-19 4

不确定性 4

GM(1 3

计算机模拟 3

1)模型 2

DX桩 2

D区 2

Preissmann格式 2

SARS 2

TRIZ 2

Weibull分布 2

k-ε模型 2

临震信号 2

云模型 2

人员疏散 2

展开 ︾

检索范围:

排序: 展示方式:

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1243-1250 doi: 10.1007/s11709-019-0553-3

摘要: Controlled low strength materials (CLSM) are flowable and self-compacting construction materials that have been used in a wide variety of applications. This paper describes the numerical modeling of CLSM fills with finite element method under compression loading and the bond performance of CLSM and steel rebar under pullout loading. The study was conducted using a plastic-damage model which captures the material behavior using both classical theory of elasto-plasticity and continuum damage mechanics. The capability of the finite element approach for the analysis of CLSM fills was assessed by a comparison with the experimental results from a laboratory compression test on CLSM cylinders and pullout tests. The analysis shows that the behavior of a CLSM fill while subject to a failure compression load or pullout tension load can be simulated in a reasonably accurate manner.

关键词: CLSM     finite element method     compressive strength     pullout     numerical modeling     plastic damage model    

An enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial

Mohammad Reza AZADI KAKAVAND, Ertugrul TACIROGLU

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1531-1544 doi: 10.1007/s11709-020-0675-7

摘要: Some of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes, while a few more advanced models employ two damage variables. Models with a single variable have an inherent difficulty in accounting for the damage accrued due to tensile and compressive actions in appropriately different manners, and their mutual dependencies. In the current models that adopt two damage variables, the independence of these damage variables during cyclic loading results in the failure to capture the effects of tensile damage on the compressive behavior of concrete and vice-versa. This study presents a cyclic model established by extending an existing monotonic constitutive model. The model describes the cyclic behavior of concrete under multiaxial loading conditions and considers the influence of tensile/compressive damage on the compressive/tensile response. The proposed model, dubbed the enhanced concrete damage plasticity model (ECDPM), is an extension of an existing model that combines the theories of classical plasticity and continuum damage mechanics. Unlike most prior studies on models in the same category, the performance of the proposed ECDPM is evaluated using experimental data on concrete specimens at the material level obtained under cyclic multiaxial loading conditions including uniaxial tension and confined compression. The performance of the model is observed to be satisfactory. Furthermore, the superiority of ECDPM over three previously proposed constitutive models is demonstrated through comparisons with the results of a uniaxial tension-compression test and a virtual test.

关键词: damage plasticity model     plain concrete     cyclic loading     multiaxial loading conditions    

Dynamic visco-plastic memorial nested yield surface model of soil

ZHUANG Haiyang, CHEN Guoxing, ZHU Dinghua

《结构与土木工程前沿(英文)》 2008年 第2卷 第1期   页码 49-55 doi: 10.1007/s11709-008-0003-0

摘要: Under cyclic loadings, the plastic strain of soft soil will take place under very small shear strain. So the visco-plastic model is appropriate to be used to model the dynamic characteristics of soft soil. Based on the principles of geotechnical plastic mechanics, the incremental visco-plastic memorial nested yield surface model is developed by using the field theory of nonlinear isotropic materials and the theory of kinematical hardening modulus. At the end of anyone time increment, the inverted loading surface, the damaged surface and the initial loading surface which is tangent with the inside of inverted loading surface are memorized respectively. The kinematical behavior of yield surface is defined by using these three surfaces. The developed model in this paper is successfully implemented in ABAQUS using FORTRAN subroutine. The predicted stress-strain relationships of soft soil are compared with the test results given by dynamic triaxial tests. It is proved that the cyclic undrained stress-strain relation of soils can be fairly simulated by the model. At last, the nonlinear earthquake response of a representative soft site in Nanjing city is calculated with the dynamic behavior of soils modeled by the new developed model. The results are accordant to the earthquake response of soft site given by other scholars.

关键词: developed     dynamic     surface     inverted     appropriate    

广义塑性力学及其运用

郑颖人,孔亮

《中国工程科学》 2005年 第7卷 第11期   页码 21-36

摘要:

分析了经典塑性力学用于岩土类材料的问题,它采用了3个不符合岩土材料变形机制的假设。从固体力学原理直接导出广义塑性位势理论,将经典塑性力学改造为更一般的塑性力学——广义塑性力学。广义塑性力学采用了塑性力学中的分量理论,能反映应力路径转折的影响,并避免了采用正交流动法则所引起的过大剪胀等不合理现象,也不会产生当前非关联流动法则中任意假定塑性势面引起的误差。给出了广义塑性力学的屈服面理论、硬化定律和应力-应变关系,并建立了考虑应力主轴旋转的广义塑性位势理论。屈服条件是状态参数,也是试验参数,只能由试验给出。应用表明,广义塑性力学可作为岩土材料的建模理论,还可应用于诸如极限分析等土力学的诸多领域,具有广阔的应用前景。

关键词: 岩土塑性力学     广义塑性力学     塑性势     屈服面     本构模型    

Predictive model to decouple the contributions of friction and plastic deformation to machined surface

Subhash ANURAG, Yuebin GUO,

《机械工程前沿(英文)》 2010年 第5卷 第3期   页码 247-255 doi: 10.1007/s11465-010-0097-7

摘要: Temperature on the machined surface is critical for surface integrity and the performance of a precision component. However, the temperature of a machined surface is challenging for in-situ measurement. Furthermore, the individual contribution of tool/work friction and plastic deformation of work materials to surface temperature is very difficult to quantify because the measured temperature is always the resultant temperature. This lack of understanding on the temperature distribution blocks the design of effective cutting tool geometries and materials to minimize surface temperature. This study provides a finite element method based on a predictive model to decouple the contributions of tool/work friction and material plastic deformation to surface temperature in a dry cutting process. The study shows that the plastic deformation of work material contributes to the majority of surface temperature, whereas the tool/work friction contribution is secondary. High temperatures are produced when more materials are plowed under the cutting edge. A large tool/work friction leads to higher surface temperatures, and the use of a cutting tool with physical properties in process simulation significantly improves the accuracy of predicted surface temperatures. Residual stress reversal from subsurface maximum residual to surface maximum residual stress may occur when tool/work friction increases.

关键词: surface temperature     friction     residual stress     finite element analysis (FEA)     dry cutting     tool property    

Endochronic damage constitutive model for fully-graded aggregate mass concrete

SONG Yupu, WANG Huailiang

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 274-280 doi: 10.1007/s11709-007-0035-x

摘要: The behavior of deformation and strength of a fully-graded aggregate concrete under complex stress state is the basis of the nonlinear analysis and design for mass concrete structures such as concrete dams. In this paper, based on the combined endochronic theory with damage mechanics and on the quantities of experimental data, an endochronic damage constitutive model suitable for various aggregate grade concrete is proposed. This model takes into consideration the scale effect and the effect of wet screen sieve of aggregate in which the concept of yield surface is not needed and the difference of damage evolution rule of various graded aggregate concrete is a concern. The proposed model is used to analyze the deformation and strength of fully-graded aggregate mass concrete and the wet screened aggregate concrete specimens. The calculated results are in good agreement with experimental data, which can be used as a guide for the design of arch dams and other mass concrete structures.

关键词: concept     surface     design     concern     strength    

Nonlinear cumulative damage model for multiaxial fatigue

SHANG De-guang, SUN Guo-qin, DENG Jing, YAN Chu-liang

《机械工程前沿(英文)》 2006年 第1卷 第3期   页码 265-269 doi: 10.1007/s11465-006-0035-x

摘要: On the basis of the continuum fatigue damage theory, a nonlinear uniaxial fatigue cumulative damage model is first proposed. In order to describe multiaxial fatigue damage characteristics, a nonlinear multiaxial fatigue cumulative damage model is developed based on the critical plane approach. The proposed model can consider the multiaxial fatigue limit, mean hydrostatic pressure and the unseparated characteristic for the damage variables and loading parameters. The recurrence formula of fatigue damage model was derived under multilevel loading, which is used to predict multiaxial fatigue life. The results showed that the proposed nonlinear multiaxial fatigue cumulative damage model is better than Miner s rule.

An improved algorithm for McDowell’s analytical model of residual stress

null

《机械工程前沿(英文)》 2014年 第9卷 第2期   页码 150-155 doi: 10.1007/s11465-014-0295-9

摘要:

The analytical model for two-dimensional elastoplastic rolling/sliding contact proposed by McDowell is an important tool for predicting residual stress in rolling/sliding processes. In application of the model, a problem of low predicting precision near the surface layer of the component is found. According to the volume-constancy of plastic deformation, an improved algorithm for McDowell’s model is proposed in order to improve its predicting accuracy of the surface residual stress. In the algorithm, a relationship between three normal stresses perpendicular to each other at any point within the component is derived, and the relationship is applied to McDowell’s model. Meanwhile, an unnecessary hypothesis proposed by McDowell can be eliminated to make the model more reasonable. The simulation results show that the surface residual stress predicted by modified method is much closer to the FEM results than the results predicted by McDowell’s model under the same simulation conditions.

关键词: residual stress     McDowell’s model     volume-constancy of plastic deformation     FEM     elastoplastic rolling/sliding contact    

A model for creep life prediction of thin tube using strain energy density as a function of stress triaxialityunder quasi-static loading employing elastic-creep & elastic-plastic-creep deformation

Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY

《机械工程前沿(英文)》 2013年 第8卷 第2期   页码 181-186 doi: 10.1007/s11465-013-0257-7

摘要:

This paper demonstrates the application of a new multiaxial creep damage model developed by authors using stress traixiality to predict the failure time of a component made of 0.5%Cr-0.5%Mo-0.25%V low alloy steel. The model employs strain energy density and assumes that the uniaxial strain energy density of a component can be easily calculated and can be converted to multi-axial strain energy density by multiplying it to a function of stress trixiality which is a ratio of mean stress to equivalent stress. For comparison, an elastic-creep and elastic-plastic-creep finite element analysis (FEA) is performed to get multi-axial strain energy density of the component which is compared with the calculated strain energy density for both cases. The verification and application of the model are demonstrated by applying it to thin tube for which the experimental data are available. The predicted failure times by the model are compared with the experimental results. The results show that the proposed model is capable of predicting failure times of the component made of the above-mentioned material with an accuracy of 4.0%.

关键词: elastic-creep     elastic-plastic-creep     stress triaxiality     life prediction     pressure vessels     finite element analysis (FEA)    

Damage-constitutive model for seawater coral concrete using different stirrup confinements subjected

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 429-447 doi: 10.1007/s11709-022-0913-2

摘要: Recently, the application of detrital coral as an alternative to natural aggregates in marine structures has attracted increased attention. In this study, research on the compressive performance of coral aggregate concrete (CAC) confined using steel stirrups with anti-rust treatment was experimentally conducted. A total of 45 specimens were cast, including 9 specimens without stirrups and under different strength grades (C20, C30, and C40) and 36 specimens under different strength grades (C20, C30, and C40). Moreover, three stirrup levels (rectangular, diamond-shaped compound, and spiral stirrups) and different stirrup spacings (40, 50, 60, and 70 mm) were used. Subsequently, the stress−strain curves of specimens subjected to axial loading were measured. The effects of the stirrup spacing and stirrup configurations on the stress and strain were investigated, respectively, and the lateral effective stress of the different stirrups was calculated based on the cohesive-elastic ring model and modified elastic beam theory. Moreover, a damage-constitutive model of CAC considering the lateral stress was set up based on damage mechanics theory. The results indicated an increase in the stress and strain with a decrease in the stirrup spacing, and the adopted stirrup ratio had a better strengthening effect than the different concrete grades, and the variation in the deformation was restricted by the performance of coral coarse aggregate (CA). However, an increment in the lateral strain was observed with an increase in the axial strain. The lateral stress model showed a good agreement with the experimental data, and the proposed damage-constitutive model had a good correlation with the measured stress−strain curves.

关键词: coral aggregate concrete     stress−strain curves     lateral effective stress     peak stress     axial−lateral curves     damage-constitutive model.    

An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and groupmethod of data handling surrogate model

Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 907-929 doi: 10.1007/s11709-020-0628-1

摘要: In this study, the performance of an efficient two-stage methodology which is applied in a damage detection system using a surrogate model of the structure has been investigated. In the first stage, in order to locate the damage accurately, the performance of the modal strain energy based index for using different numbers of natural mode shapes has been evaluated using the confusion matrix. In the second stage, to estimate the damage extent, the sensitivity of most used modal properties due to damage, such as natural frequency and flexibility matrix is compared with the mean normalized modal strain energy (MNMSE) of suspected damaged elements. Moreover, a modal property change vector is evaluated using the group method of data handling (GMDH) network as a surrogate model during damage extent estimation by optimization algorithm; in this part of methodology, the performance of the three popular optimization algorithms including particle swarm optimization (PSO), bat algorithm (BA), and colliding bodies optimization (CBO) is examined and in this regard, root mean square deviation ( ) based on the modal property change vector has been proposed as an objective function. Furthermore, the effect of noise in the measurement of structural responses by the sensors has also been studied. Finally, in order to achieve the most generalized neural network as a surrogate model, GMDH performance is compared with a properly trained cascade feed-forward neural network (CFNN) with log-sigmoid hidden layer transfer function. The results indicate that the accuracy of damage extent estimation is acceptable in the case of integration of PSO and MNMSE. Moreover, the GMDH model is also more efficient and mimics the behavior of the structure slightly better than CFNN model.

关键词: two-stage method     modal strain energy     surrogate model     GMDH     optimization damage detection    

Damage mechanism and evaluation model of compressor impeller remanufacturing blanks: A review

Haiyang LU, Yanle LI, Fangyi LI, Xingyi ZHANG, Chuanwei ZHANG, Jiyu DU, Zhen LI, Xueju RAN, Jianfeng LI, Weiqiang WANG

《机械工程前沿(英文)》 2019年 第14卷 第4期   页码 402-411 doi: 10.1007/s11465-019-0548-8

摘要: The theoretical and technological achievements in the damage mechanism and evaluation model obtained through the national basic research program “Key Fundamental Scientific Problems on Mechanical Equipment Remanufacturing” are reviewed in this work. Large centrifugal compressor impeller blanks were used as the study object. The materials of the blanks were FV520B and KMN. The mechanism and evaluation model of ultra-high cycle fatigue, erosion wear, and corrosion damage were studied via theoretical calculation, finite element simulation, and experimentation. For ultra-high cycle fatigue damage, the characteristics of ultra-high cycle fatigue of the impeller material were clarified, and prediction models of ultra-high cycle fatigue strength were established. A residual life evaluation technique based on the “ - - ” (where was the nonlinear parameter, was the Vickers hardness, and was the fatigue life) double criterion method was proposed. For erosion wear, the flow field of gas-solid two-phase flow inside the impeller was simulated, and the erosion wear law was clarified. Two models for erosion rate and erosion depth calculation were established. For corrosion damage, the electrochemical and stress corrosion behaviors of the impeller material and welded joints in H S/CO environment were investigated. (critical stress intensity factor) and d /d (crack growth rate, where is the total crack length and is time) varied with H S concentration and temperature, and their variation laws were revealed. Through this research, the key scientific problems of the damage behavior and mechanism of remanufacturing objects in the multi-strength field and cross-scale were solved. The findings provide theoretical and evaluation model support for the analysis and evaluation of large centrifugal compressor impellers before remanufacturing.

关键词: remanufacturing     centrifugal compressor impeller     remanufacturing blank     damage mechanism     evaluation model    

Static-based early-damage detection using symbolic data analysis and unsupervised learning methods

João Pedro SANTOS,Christian CREMONA,André D. ORCESI,Paulo SILVEIRA,Luis CALADO

《结构与土木工程前沿(英文)》 2015年 第9卷 第1期   页码 1-16 doi: 10.1007/s11709-014-0277-3

摘要: A large amount of researches and studies have been recently performed by applying statistical and machine learning techniques for vibration-based damage detection. However, the global character inherent to the limited number of modal properties issued from operational modal analysis may be not appropriate for early-damage, which has generally a local character. The present paper aims at detecting this type of damage by using static SHM data and by assuming that early-damage produces dead load redistribution. To achieve this objective a data driven strategy is proposed, consisting of the combination of advanced statistical and machine learning methods such as principal component analysis, symbolic data analysis and cluster analysis. From this analysis it was observed that, under the noise levels measured on site, the proposed strategy is able to automatically detect stiffness reduction in stay cables reaching at least 1%.

关键词: structural health monitoring     early-damage detection     principal component analysis     symbolic data     symbolic dissimilarity measures     cluster analysis     numerical model     damage simulations    

Regional seismic-damage prediction of buildings under mainshock–aftershock sequence

Xinzheng LU, Qingle CHENG, Zhen XU, Chen XIONG

《工程管理前沿(英文)》 2021年 第8卷 第1期   页码 122-134 doi: 10.1007/s42524-019-0072-x

摘要: Strong aftershocks generally occur following a significant earthquake. Aftershocks further damage buildings weakened by mainshocks. Thus, the accurate and efficient prediction of aftershock-induced damage to buildings on a regional scale is crucial for decision making for post-earthquake rescue and emergency response. A framework to predict regional seismic damage of buildings under a mainshock–aftershock (MS–AS) sequence is proposed in this study based on city-scale nonlinear time-history analysis (THA). Specifically, an MS–AS sequence-generation method is proposed to generate a potential MS–AS sequence that can account for the amplification, spectrum, duration, magnitude, and site condition of a target area. Moreover, city-scale nonlinear THA is adopted to predict building seismic damage subjected to MS–AS sequences. The accuracy and reliability of city-scale nonlinear THA for an MS–AS sequence are validated by as-recorded seismic responses of buildings and simulation results in published literature. The town of Longtoushan, which was damaged during the Ludian earthquake, is used as a case study to illustrate the detailed procedure and advantages of the proposed framework. The primary conclusions are as follows. (1) Regional seismic damage of buildings under an MS–AS sequence can be predicted reasonably and accurately by city-scale nonlinear THA. (2) An MS–AS sequence can be generated reasonably by the proposed MS–AS sequence-generation method. (3) Regional seismic damage of buildings under different MS–AS scenarios can be provided efficiently by the proposed framework, which in turn can provide a useful reference for earthquake emergency response and scientific decision making for earthquake disaster relief.

关键词: regional seismic damage prediction     city-scale nonlinear time-history analysis     mainshock–aftershock sequence     multiple degree-of-freedom (MDOF) model     2014 Ludian earthquake    

Moving policy and regulation forward for single-use plastic alternatives

《环境科学与工程前沿(英文)》 2021年 第15卷 第3期 doi: 10.1007/s11783-021-1423-5

摘要: Single-use plastics are often used once or cannot be reused for extended periods. They are widely consumed with the rapid development of social economy. The waste generated by single-use plastics threatens ecosystem health by entering the environment and ultimately restricts sustainable human development. The innovation of sustainable and environmentally friendly single-use plastic alternative materials and the joint participation of governments, enterprises and the public are promising technologies and management approaches that can solve the problem of single-use plastics wastes. The development of single-use plastic alternative products can be promoted fundamentally only by improving relevant legislation and standards, providing differentiated industrial policies, encouraging scientific and technological innovation and expanding public participation.

关键词: Single-use plastic alternatives     Policy     Regulation     Sustainable development    

标题 作者 时间 类型 操作

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

期刊论文

An enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial

Mohammad Reza AZADI KAKAVAND, Ertugrul TACIROGLU

期刊论文

Dynamic visco-plastic memorial nested yield surface model of soil

ZHUANG Haiyang, CHEN Guoxing, ZHU Dinghua

期刊论文

广义塑性力学及其运用

郑颖人,孔亮

期刊论文

Predictive model to decouple the contributions of friction and plastic deformation to machined surface

Subhash ANURAG, Yuebin GUO,

期刊论文

Endochronic damage constitutive model for fully-graded aggregate mass concrete

SONG Yupu, WANG Huailiang

期刊论文

Nonlinear cumulative damage model for multiaxial fatigue

SHANG De-guang, SUN Guo-qin, DENG Jing, YAN Chu-liang

期刊论文

An improved algorithm for McDowell’s analytical model of residual stress

null

期刊论文

A model for creep life prediction of thin tube using strain energy density as a function of stress triaxialityunder quasi-static loading employing elastic-creep & elastic-plastic-creep deformation

Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY

期刊论文

Damage-constitutive model for seawater coral concrete using different stirrup confinements subjected

期刊论文

An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and groupmethod of data handling surrogate model

Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN

期刊论文

Damage mechanism and evaluation model of compressor impeller remanufacturing blanks: A review

Haiyang LU, Yanle LI, Fangyi LI, Xingyi ZHANG, Chuanwei ZHANG, Jiyu DU, Zhen LI, Xueju RAN, Jianfeng LI, Weiqiang WANG

期刊论文

Static-based early-damage detection using symbolic data analysis and unsupervised learning methods

João Pedro SANTOS,Christian CREMONA,André D. ORCESI,Paulo SILVEIRA,Luis CALADO

期刊论文

Regional seismic-damage prediction of buildings under mainshock–aftershock sequence

Xinzheng LU, Qingle CHENG, Zhen XU, Chen XIONG

期刊论文

Moving policy and regulation forward for single-use plastic alternatives

期刊论文